Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 19, 2026
-
We describe CATKE, a parameterization for fluxes associated with small‐scale or “microscale” ocean turbulent mixing on scales between 1 and 100 m. CATKE uses a downgradient formulation that depends on a prognostic turbulent kinetic energy (TKE) variable and a diagnostic mixing length scale that includes a dynamic convective adjustment (CA) component. With its dynamic convective mixing length, CATKE predicts not just the depth spanned by convective plumes but also the characteristic convective mixing timescale, an important aspect of turbulent convection not captured by simpler static CA schemes. As a result, CATKE can describe the competition between convection and other processes such as shear‐driven mixing and baroclinic restratification. To calibrate CATKE, we use Ensemble Kalman Inversion to minimize the error between 21 large eddy simulations (LESs) and predictions of the LES data by CATKE‐parameterized single column simulations at three different vertical resolutions. We find that CATKE makes accurate predictions of both idealized and realistic LES compared to microscale turbulence parameterizations commonly used in climate models.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract The ability to probe and control matter at the picometer scale is essential for advancing quantum and energy technologies. Scanning transmission electron microscopy offers powerful capabilities for materials analysis and modification, but sample damage, drift, and scan distortions hinder single atom analysis and deterministic manipulation. Materials analysis and modification via electron–solid interactions can be transformed by precise delivery of electrons to a specified atomic location, maintaining the beam position despite drift, and minimizing collateral dose. Here a fast, low‐dose, sub‐20‐pm precision electron beam positioning technique is developed, “atomic lock‐on,” (ALO), which offers the ability to position the beam on a specific atomic columnwithoutpreviously irradiating that column. This technique is used to lock onto a single selected atomic location to repeatedly measure its weak electron energy loss signal despite sample drift. Moreover, electron beam‐matter interactions in single atomic events are measured with time resolution. This enables observation of single‐atom dynamics, such as atomic bistability, revealing partially bonded atomic configurations and recapture phenomena. This opens prospects for using electron microscopy for high‐precision measurements and deterministic control of matter for quantum technologies.more » « less
-
Abstract Programmable synaptic devices that can achieve timing‐dependent weight updates are key components to implementing energy‐efficient spiking neural networks (SNNs). Electrochemical ionic synapses (EIS) enable the programming of weight updates with very low energy consumption and low variability. Here, the strongly nonlinear kinetics of EIS, arising from nonlinear dynamics of ions and charge transfer reactions in solids, are leveraged to implement various forms of spike‐timing‐dependent plasticity (STDP). In particular, protons are used as the working ion. Different forms of the STDP function are deterministically predicted and emulated by a linear superposition of appropriately designed pre‐ and post‐synaptic neuron signals. Heterogeneous STDP is also demonstrated within the array to capture different learning rules in the same system. STDP timescales are controllable, ranging from milliseconds to nanoseconds. The STDP resulting from EIS has lower variability than other hardware STDP implementations, due to the deterministic and uniform insertion of charge in the tunable channel material. The results indicate that the ion and charge transfer dynamics in EIS can enable bio‐plausible synapses for SNN hardware with high energy efficiency, reliability, and throughput.more » « less
-
We present the design, implementation, and evaluation of SeaScan, an energy-efficient camera for 3D imaging of underwater environments. At the core of SeaScan’s design is a trinocular lensing system, which employs three ultra-lowpower monochromatic image sensors to reconstruct color images. Each of the sensors is equipped with a different filter (red, green, and blue) for color capture. The design introduces multiple innovations to enable reconstructing 3D color images from the captured monochromatic ones. This includes an ML-based cross-color alignment architecture to combine the monochromatic images. It also includes a cross-refractive compensation technique that overcomes the distortion of the wide-angle imaging of the low-power CMOS sensors in underwater environments.We built an end-to-end prototype of SeaScan, including color filter integration, 3D reconstruction, compression, and underwater backscatter communication. Our evaluation in real-world underwater environments demonstrates that SeaScan can capture underwater color images with as little as 23.6 mJ, which represents 37× reduction in energy consumption in comparison to the lowest-energy state-of-the-art underwater imaging system.We also report qualitative and quantitative evaluation of SeaScan’s color reconstruction and demonstrate its success in comparison to multiple potential alternative techniques (both geometric and ML-based) in the literature. SeaScan’s ability to image underwater environments at such low energy opens up important applications in long-term monitoring for ocean climate change, seafood production, and scientific discovery.more » « lessFree, publicly-accessible full text available December 4, 2025
-
Free, publicly-accessible full text available July 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Sparse data structures like hash tables, trees, or compressed tensors are ubiquitous, but operations on these structures are expensive and inefficient on current systems. Prior work has proposed hardware acceleration for these operations, but these techniques have two key shortcomings: they limit the types of data structures they support, and they focus on reads but do not support fine-grained updates to these structures. We present Terminus, a programmable accelerator for read and update operations on sparse data structures. Terminus extends each general-purpose core with a programmable dataflow engine capable of accelerating a wide range of structures and operations. Terminus engines are flexible yet simple, as they focus on common operations and defer rare, complex ones to cores. Terminus features a simple concurrency control mechanism based on address ranges that enables safe updates while preserving parallelism. We evaluate Terminus on serial and parallel benchmarks on a wide range of sparse data structures. Terminus improves performance by gmean 7.4x over a CPU baseline, showing that Terminus can accelerate fine-grained reads and writes that were previously not possible in prior accelerators for sparse structures.more » « less
-
Abstract Atmospheric gravity waves can play a significant role on atmospheric chemistry through temperature fluctuations. A recent modeling study introduced a method to implement subgrid‐scaleorographicgravity‐wave‐induced temperature perturbations in the Whole Atmosphere Community Climate Model (WACCM). The model with a wave‐induced temperature parameterization was able to reproduce for example, the influence of mountain wave events on atmospheric chemistry, as highlighted in previous literature. Here we extend the subgrid‐scale wave‐induced temperature parameterization to also includenon‐orographicgravity waves arising from frontal activity and convection. We explore the impact of these waves on middle atmosphere chemistry, particularly focusing on reactions that are strongly sensitive to temperature. The non‐orographic gravity waves increase the variability of chemical reaction rates, especially in the lower mesosphere. As an example, we show that this, in turn, leads to increases in the daytime ozone variability. To demonstrate another impact, we briefly investigate the role of non‐orographic gravity waves in cirrus cloud formation in this model. Consistent with findings from the previous study focusing on orographic gravity waves, non‐orographic waves also enhance homogeneous nucleation and increase cirrus clouds. The updated method used enables the global chemistry‐climate model to account for both orographic and non‐orographic gravity‐wave‐induced subgrid‐scale dynamical perturbations in a consistent manner.more » « less
-
Free, publicly-accessible full text available January 28, 2026
An official website of the United States government
